Macaulay-Buchberger Basis Theorem for Residue Class Polynomial Rings with Torsion and Border Bases over Rings
نویسندگان
چکیده
In this paper we generalize the Macaulay-Buchberger basis theorem to the case, where the residue class polynomial ring over a Noetherian ring is not necessarily a free module. Recently, this theorem has been extended from polynomial rings over fields to rings, when residue class polynomial ring is free in (Francis & Dukkipati, 2014). As an application of this generalization we develop a theory of border bases for ideals where the corresponding residue class rings are finitely generated and have torsion. We present a border division algorithm and prove termination of the algorithm for a special class of border bases. We show the existence of such border bases and present some characterizations in this regard. We also show that Pauer (2007) reduced Gröbner bases with respect to all possible term orders is contained in this class of border bases.
منابع مشابه
Reduced Gröbner bases and Macaulay-Buchberger Basis Theorem over Noetherian rings
In this paper, we extend the characterization of Z[x]/〈f〉, where f ∈ Z[x] to be a free Z-module to multivariate polynomial rings over any commutative Noetherian ring, A. The characterization allows us to extend the Gröbner basis method of computing a k-vector space basis of residue class polynomial rings over a field k (Macaulay-Buchberger Basis Theorem) to rings, i.e. A[x1, . . . , xn]/a, wher...
متن کاملStandard bases in mixed power series and polynomial rings over rings
In this paper we study standard bases for submodules of a mixed power series and polynomial ring RJt1, . . . , tmK[x1, . . . , xn] s respectively of their localization with respect to a t-local monomial ordering for a certain class of noetherian rings R. The main steps are to prove the existence of a division with remainder generalizing and combining the division theorems of Grauert–Hironaka an...
متن کاملGray Images of Constacyclic Codes over some Polynomial Residue Rings
Let be the quotient ring where is the finite field of size and is a positive integer. A Gray map of length over is a special map from to ( . The Gray map is said to be a ( )-Gray map if the image of any -constacyclic code over is a -constacyclic code over the field . In this paper we investigate the existence of ( )-Gray maps over . In this direction, we find an equivalent ...
متن کاملResults on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module
Let be a local Cohen-Macaulay ring with infinite residue field, an Cohen - Macaulay module and an ideal of Consider and , respectively, the Rees Algebra and associated graded ring of , and denote by the analytic spread of Burch’s inequality says that and equality holds if is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of as In this paper we ...
متن کاملAlgorithmic Properties of Polynomial Rings
In this paper we investigate how algorithms for computing heights, radicals, unmixed and primary decompositions of ideals can be lifted from a Noetherian commutative ring R to polynomial rings over R. It is a standard problem in mathematics to study which properties of a mathematical structure are preserved in derived structures. A typical result of this kind is the Hilbert Basis Theorem which ...
متن کامل